A fixed-point theorem for asymptotically contractive mappings

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fixed-point Theorem for Asymptotically Contractive Mappings

We present fixed point theorems for a nonexpansive mapping from a closed convex subset of a uniformly convex Banach space into itself under some asymptotic contraction assumptions. They generalize results valid for bounded convex sets or asymptotically compact sets. In this note we generalize a famous result by Browder [3], Göhde [6] and Kirk [8], recently extended by Luc in [14], by using the ...

متن کامل

Fixed Point Theorems for Asymptotically Contractive Mappings

In this short paper, we prove fixed point theorems for nonexpansive mappings whose domains are unbounded subsets of Banach spaces. These theorems are generalizations of Penot’s result in [Proc. Amer. Math. Soc., 131 (2003), 2371–2377].

متن کامل

Fixed point theorems for $alpha$-contractive mappings

In this paper we prove existence the common fixed point with different conditions for $alpha-psi$-contractive mappings. And generalize weakly Zamfirescu map in to modified weakly Zamfirescu map.

متن کامل

A Fixed Point Theorem for Contractive Non-self Mappings

We establish a fixed point theorem for certain non-self mappings of contractive type which take a nonempty and closed subset of a complete metric space X into X.

متن کامل

Unique Fixed Point Theorem for Weakly C-contractive Mappings

In this work we introduce the class of weakly c-contractive mappings. We establish that these mappings necessarily have unique fixed points in complete metric spaces. We support our result by an example. Our result also generalises an existing result in metric spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2003

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-03-06999-5